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Preface

The thesis is the second in a series AFIT thesis research efforts to develop a new
post—processing Kalman filter for the Completely Integrated Reference Instrumentation
System (CIRIS). The ultimate goal is the “Advanced CIRIS Filter,” designed around
the current CIRIS II LN-39 INS, which processes both standard and differential mode
Global Positioning System (GPS) measurements in addition to the current ground-based
transponder measurements. The new Kalman filter is required to increase the position and
velocity estimation accuracy of CIRIS so that CIRIS will remain a more accurate estimator
relative to other types of navigation systems. This research is sponsored by the Central

Inertial Guidance Test Facility (CIGTF), 6585 Test Group, Holloman AFB, New Mexico.

The new CIRIS Kalman filter developed in this and previous research is built upon the
Multimode Simulation for Optimal Filter Evaluation (MSOFE) software developed by the
Avionics Laboratory at Wright-Patterson AFB, Ohio. Although MSOFE was conceived
and implemented as a simulation tool, its thoughtfully designed structure makes it readily
adaptable for use with real measurements. It seems to be a consensus among the AFIT
students who have used MSOFE that it is a difficult tool to master. I agree, but having
become a journeyman MSOFE user myself, I see that the long learning curve is rooted in
the difficult concepts of Kalman filter theory. MSOFE itself is very flexible and obviously
well engineered. In an academic setting, MSOFE is exactly the type of tool needed in a
“Kalman filter laboratory” to make the concept of a Kalman filter come to life. Hopefully,
this thesis shows that MSOFE can also be put to good use outside of research laboratories

and academic institutions.

At the onset of my particular research I had hoped to pick up at the point where
my predecessor, Capt Joseph Solomon, had left off, and to concentrate on developing GPS
error models and extending the filter structure to incorporate real GPS measurements.
However, the idea of “serial” research, especially in a graduate-school setting, is often over-
optimistic. I had to acquire and assimilate a great deal of totally new (to me) knowledge
before I could comprehend what Capt Solomon had accomplished and what remained to

be done. This need to “get up to speed,” combined with the late availability of real GPS
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data and my personal interest in the discipline of software engineering, led me to focus
my efforts on small refinements to the error model on which the filter is based, an almost
complete rewrite of the filter software, and additional analysis of the filter’s performance
using regular CIRIS (non-GPS) data sets. I hope that my forthcoming assignment to
CIGTF will permit me to continue the development of the Advanced CIRIS Filter in
parallel with follow—on research at AFIT.

I am indebted to several individuals for their assistance during my stay at AFIT. My
thesis advisor, Lt Col Zdzislaw (Stan) Lewantowicz, guided me through this effort with
much patience and good advice. If any individual can be said to have a natural aptitude
for the mathematics of error model development, it is Col Lewantowicz. I was privileged to
learn the theory of stochastic estimation from Dr. Peter Maybeck. Dr. Maybeck'’s ability as
an instructor and the depth of his knowledge both exceed, in stochastics terminology, the
+30 threshold. At the Avionics Lab, Mr. Stanton Musick, the prime force behind MSOFE,
and his assistant, Mr. Robert Urbanic, provided exceptional assistance during the time I
was learning to use MSOFE. At CIGTF, Mr. Gordon Simkin and Mr. Francisco Ramerez
answered my many questions and provided me with CIRIS data. I also wish to thank
Capt Joseph Solomon, Dr. Robert Ewing, and Mr. Don Smith. Last, because his name
starts with a “Z,” but first in my book, is Mr. Daniel Zambon, director of AFIT’s Signal
Information Processing Lab. Mr. Zambon is genuinely dedicated to providing reliable
computer resources in support of student research efforts. He patiently assisted me on

many occasions and for this I am extremely appreciative.
I also wish to acknowledge the lifelong support of my parents, Charles Edward

Snodgrass and Shirley Ann Snodgrass. Their love and encouragement is priceless.

Faron Britt Snodgrass
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Abstract
Ve

The Completely Integrated Reference Instrumentation System (CIRIS) is operated
by the Central Inertial Guidance Test Facility (CIGTF), at Holloman AFB, New Mex-
ico. CIRIS functions as a reference navigation system used for evaluating the accuracy
of other types of navigations systems. As a reference standard, the root-mean-square
errors in CIRIS estimates of aircraft trajectory variables must be maintained an order of
magnitude smaller than the corresponding errors of the navigation system under test. The
primary hardware components of CIRIS are a reference inertial navigation system (INS),
a baro-altimeter, an array of ground-based transponders, a transponder interrogator, and
data recording equipment. The transponder equipment provides transponder—to-aircraft
range and range-rate measurements during test flights. The primary software compo-
nent of CIRIS is a Kalman filter program which processes the recorded measurements and

estimates the true position and velocity of the aircraft throughout the test flight. ~

The revstimaf:ion accuracy of CIRIS must be increased so that CIRIS can serve as a
benchmark for measuring the accuracy of Global Positioning System (GPS) aided inertial
navigation systems. This thesis documents the continuation of research to develop com-
pletely new Kalman filter software for CIRIS. A TO-state filter, based on the Multimode
Simulation for Optimal Filter Evaluation (MSOFE) program, developed in previous re-
search is the starting point. This 70-state filter models error dynamics associated with the
CIRIS Litton LN-39 INS, baro-altimeter, and transponder equipment. In this thesis, the
model for atmospheric effects on transponder range measurements is refined and the filter
is modified to process barometric altitude measurements in addition to the transponder
measurements. The performance of the resulting filter is evaluated using real CIRIS data
recorded during a slow speed ground test and an aircraft flight test. The filter position and
velocity estimates are compared to independent measurements of the same quantities. The
structure for a companion fixed-interval smoother program is proposed and discussed, but
not implemented. Future research is expected to extend the filter to process differential

mode GPS measurements.
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Continued Development and Analysis of a New Extended
Kalman Filter for the Completely Integrated Reference
Instrumentation System (CIRIS)

1. Introduction

This thesis describes the continuing development and analysis of an extended Kalman
filter for the Advanced Completely Integrated Reference Instrumentation System ( CIRIS).
The major goals of this thesis effort are filter software development, filter model valida-
tion via performance evaluation, and description of a “smoothing” algorithm that makes

maximum use of the filter calculations.

CIRIS is a system for evaluating the accuracy of aided or unaided inertial navigation
systems (INS). It is operated by the Central Inertial Guidance Test Facility (CIGTF),
6585t" Test Group, Air Force Systems Command, Holloman AFB, New Mexico. Its pri-
mary hardware components are a Litton LN-39 INS, an array of ground based transpon-
ders, and a transponder interrogator {2,11]. The transponders are located at precisely
surveyed points throughout the continental United States. For a CIRIS test flight, the
INS being evaluated (test article) is placed in an aircraft alongside the LN-39 INS and the
transponder interrogator. During the flight of the aircraft, the interrogator requests and
receives range and velocity information from selected transponders. The transponders are
interrogated one at a time. Typically, a “window” containing eight or fewer transponders
is selected and the interrogator repeatedly cycles through only these transponders. The
specific transponders contained in the window may change during the flight. The range,
velocity, baro-altimeter, and LN-39 INS information is currently processed by an extended
Kalman filter algorithm running, in real-time, on a digital computer. The Kalman filter
provides accurate estimates of the aircraft position, velocity, and attitude throughout the
aircraft flight. This information is used as a reference against which the position, velocity,

and attitude calculations of the test article are compared.
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1.1 Background

The original CIRIS system was developed by CIGTF in the early 1970’s and became
operational in 1975 [4]. It uses a Litton LN-15 INS which is no longer routinely supported
by Air Force maintenance depots. This original system, called CIRIS I, is still in use. A
newer version of CIRIS, based on the LN-39 INS, is called CIRIS II. Both versions of CIRIS
are based on a 14-state extended Kalman filter of which only 11 states are actually used.
States 1-9 are the primary INS position, velocity, and attitude error states. States 10 and
11 model errors in the baro-altimeter aiding of the vertical channel. States 12-14 were
originally intended to model errors in Doppler velocity aiding but are not used because
initial tests indicated the Doppler aiding did not provide a significant increase in accuracy.
All subsequent references to CIRIS refer to CIRIS II. The term “Advanced CIRIS” is used
here to refer to the high—order (50 or more states) post—processing filters developed in this,

previous, and subsequent AFIT thesis research.

The 11-state CIRIS Kalman filter runs on a Hewlett-Packard HP 1000 computer
carried aboard the aircraft. The position and velocity estimates are recomputed every
second. The current CIRIS I system provides latitude and longitude accurate to 13 feet
(ft) 1o, altitude accurate to 40 ft 1o, north and west velocity accurate to 0.1 feet/second
(fps) 1o, and vertical velocity accurate to 0.4 fps 1o [4]. The 1o standard deviation value

is for a Gaussian (normal) error distribution.

Currently, the position and velocity estimates provided by CIRIS are more accurate
than those from almost any other type of navigation system. Thus CIRIS is a reference
standard for evaluating the accuracies of navigation systems. However, more accurate
navigation systems are becoming available due to increased manufacturing precision, new
sensor technologies, more powerful navigation computers, and satellite based navigation
systems. Since it is essential that the reference navigation system be at least an order of
magnitude more accurate the navigation systems being evaluated, the accuracy of CIRIS

must be increased.

A powerful characteristic of a properly designed Kalman filter is the ability to process

measurements of some quantity from two or more independent sources and produce an
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estimate of that quantity that is more accurate than the individual measurements. This
characteristic depends on the accuracy of the mathematical models of the physical system

as the basis for proper Kalman filter design.

Three ways of increasing CIRIS accuracy are apparent. The first approach is to ex-
pand the number of states in the CIRIS Kalman filter to model additional time—-correlated
error sources in the existing LN-39 INS and transponder measurement equipment. This
is the approach taken by Captain Joseph Solomon in his AFIT thesis research [13]. A
second, complementary approach is to reprocess the filter estimates with a type of back-
ward running optimal estimator known as a smoother. The third approach is to aid CIRIS
with Global Position System (GPS) measurements. The continuation of the first approach
and the initial investigation of the second approach are the primary goals of this thesis

research. The third approach will be the subject of future AFIT thesis research.

1.2 Research Objectives

There are three main research objectives. The first is to improve the filter software
developed by Solomon. This includes improving the source code structure and efficiency,

making the filter easier to use, and adding features and capabilities.

The second objective is to evaluate, using real CIRIS data, the performance of a
refined version of the 70-state filter developed by Solomon. This includes limited tuning

of selected filter parameters to improve performance.

The third objective is the development of a fixed-interval smoothing algorithm. This
type of smoother is an optimal estimator that processes previously filtered information
backwards in time. This requires that certain data from the forward pass be recorded for
subsequent use by the smoother. The smoothing algorithm starts with the most recent
data and proceeds backward to the beginning of the interval. This characteristic prevents
the use of the smoother in real-time; it must be used as a data post—processor. Since the
CIGTF mission does not normally require real-time data processing, the operation of the
advanced CIRIS filter and the smoother as post—processors will enhance the quality of the

reference trajectory.
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1.3 Research Approach

The performance of the revised 70-state filter aigorithm is determined, and the error
model validated, using data from a series of tests conducted at the 6585t Test Group’s
rocket sled test track. An instrument rack containing the CIRIS LN-39 INS and transpon-
der interrogator was installed in a Recovery Support Vehicle (RSV). The RSV was towed
along the track at speeds of 40-60 fps while the CIRIS data was recorded. At the same
time, the RSV’s position along the track was recorded by the independent track data acqui-
sition system. Both sets of data were time-tagged using an Inter-Range Instrumentation
Group (IRIG) time standard common to both data acquisition systems. The relatively
slow speeds are chosen to make the data collection time interval reasonably large. Since
the starting location is known precisely and the relative locations of the track position sen-
sors are known within a millimeter 7], the track measurements are an accurate standard
by which the advanced CIRIS filter performance can be evaluated. Filter model validation
is achieved by analysis of measurement residual characteristics and by comparison of the

filter's position and velocity estimates to those derived from the track measurements.

The accuracy of the 70-state filter estimates is also evaluated using CIRIS data
from an actual aircraft flight. The reference standard for this test is the measurements of
aircraft position and velocity provided by the laser tracking system at the Yuma, Arizona,
test range. The average accuracy of these laser measurements is roughly twice that of
CIRIS [7].The CIRIS II filter estimates are also compared to the laser measurements so
that accuracy of Advanced CIRIS relative to CIRIS II may be evaluated.

The smoothing algorithm suggested by this thesis research is a discrete-time inverse
covariance formulation. The algorithm was originally developed by Meditch {10] and fur-
ther described by Maybeck [9]. The method makes use of the forward pass calculations
of the covariance matrix and the state dynamics matrix for the backward pass calculation
of a smoother gain matrix. The forward pass time-history for the dynamics matrix, the
covariance matrix, and the state vector must be stored for later use during the smoothing

procedure.




1.4 Thesis Querview

Chapter II describes the fundamental concepts used in this research. This includes
coordinate frame definitions and transformations, basic Kalman filter theory, shaping fil-
ters for time-correlated noises, and measurement residual characteristics. The computer

software packages used to support this research are described here.

Chapter III provides a description of the error states and structure of the 70-state
model on which the Advanced CIRIS filter is based. The method of compensating for

“lever arm” effects is presented in detail.

Chapter IV describes the test procedures and 70-state filter performance for CIRIS
data collected during the test track runs. The existence of an anomalous periodic variation

in some of the transponder range measurement data is documented here.

Chapter V describes the 70—state filter performance for CIRIS data collected during
a long aircraft flight over the Yuma test range. The Advanced CIRIS filter output is
compared to position and velocity measurements from the laser tracking equipment. The

accuracy of Advanced CIRIS relative to CIRIS II is discussed here.

Chapter VI describes the algorithm for the proposed fixer~interval smoother program
and evaluates its practicality for use with the MSOFE-based Advanced CIRIS filter. The
proposed smoothing algorithm is an adaptation of a procedure originally designed for use

with filters based on discrete-time dynamics models.

Chapter VII summarizes the final results of this research. Conclusions based on these

results and recommmendations for future research in this area are described here.
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II. Theory

This chapter describes the fundamental concepts and theory on which this research is
based. Because of the commonality between this research and that of Solomon, significant

portions of this chapter are paraphrased from Solomon’s thesis [13].

2.1 Reference Frames

In terrestial navigation applications, position is usually specified in terms of a spher-
ical coordinate system of geodetic latitude, longitude, and altitude. Velocity is usually
specified in terms of a rectangular coordinate system based on two compass directions
and a vertical direction such as north, west, and up. It is often necessary to relate such
geographically descriptive coordinates to an earth-centered, earth-fixed (ECEF) rectan-
gular coordinate system, ( E—frame). Several geodetic systems have been developed, but
the most accurate is the World Geodetic System 1984 (WGS 84). This system is provided
to the Department of Defense (DOD) by the Defense Mapping Agency (DMA). In the
WGS 84 system, the earth is modeled as an oblate ellipsoid as illustrated in Figure 2.1.
The parameters shown in Figure 2.1, the ellipse eccentricity e, and the eilipse flattening
constant (ellipticity) f are defined in Table 2.1 (3]. The X, axis is parallel to the meridian
plane which includes the Bureau International de L’Heure (BIH). This is the Zero Meridian
(Greenwich Meridian). The Y, axis is rotated 90 degrees to the east along the equatorial
plane. The Z, axis is colinear with the earth’s spin axis and completes the right~handed,
earth-fixed, orthogonal coordinate system. The nonlinear equations [15] relating these
rectangular coordinates to the geodetic latitude (L), longitude (1)), and altitude (h) are

A
R, = ——m———— 2.1
1-~e?sin®L (21)
X. = (Rno+h)cosLcosA (2.2)
Yo = (Rn+h)cosLsinA (2.3)
Z. = (Ra(1-€?)+h)sinl (2.4)

where R, is the radius of curvature in the prime vertical.
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BIH - Defined
Zero

Meridian
(1984.0)

BiH - Defined CTP (1984.0)

ZwGs 84

Earth’s Center
of Mass

YwGs 84

Figure 2.1. WGS 84 Ellipsoidal Model

Table 2.1. WGS 84 Parameters

Parameter Definition Value
X.,Y.,Z2. | ECEF Coordinate Frame Axes | not applicable
Wie Angular Rate of the Earth 7.292115-10~5 5!
A Semimajor Axis 6378137 m
(Equatorial Radius)
B Semiminor Axis 6356752.3142 m
(Polar Radius)
e First Eccentricity 0.0818191908426
f Flattening (Ellipticity) 0.00335281066474
Jo Equatorial Acceleration 9.7803267714 m/s?
of Gravity (32.087686258 ft/s?)

2-2




WFZe
Z. U

X\

2

X

R Ye
AN ~

Xe

Figure 2.2, Coordinate Frame Relationships

The LN-39 INS implements a wander-azimuth, local~level platform mechanization
(14]. The true platform frame (T-frame) is illustrated in Figure 2.2. The right-handed,
orthogonal set of axes pointing north, west, and up are designated ¥, W, and U’ respec-
tively. This frame is defined as the NWU navigation frame ( N-frame). The right-handed,
orthogonal T-frame axes are designated X, Y, and Z respectively; this is also referred to
as the wander—azimuth frame. The wander angle alpha (a) is the angle between the X and
N axes and between the Y and W axes created by a counter-clockwise (positive) rotation
about the Z,U axis, of the T~frame with respect to the N-frame. When the wander angle
is zero, the T-frame axes are parallel with the corresponding N -frame axes. In Figure 2.2,
geodetic latitude, longitude, and altitude above the WGS 84 reference ellipsoid are desig-
nated by the variables L, A, and A, respectively. These three parameters define the vehicle

position in the navigation frame.

Another useful coordinate frame is the aircraft body (B-frame). This is reference

frame that is “attached” to the body of the aircraft so that the orientation of the B-frame
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with respect to the rigid aircraft body is constant. The origin of the B-frame is usually
taken to be the center of the inertial measurement unit (IMU), a subsystem on the INS. In
this thesis, the orientation of the B-frame axes is defined so that the B-frame is parallel
to the NWU navigation frame when the aircraft nose is pointed north with wings level.
The body frame X, axis points out the nose of the aircraft, the Y, axis points out the left
wing, and the Z, axis points up. This is not the usual convention for a body frame but it
is more convenient in this application. The orientation of the B—frame with respect to the
N-frame is defined by the three Euler angles: heading, pitch, and roll. A positive heading
angle ¥ is created by clockwise rotation of the body about the Z, axis, a positive pitch
angle 4 is created by clockwise rotation of the body about the Y; axis, and a positive roll

angle ¢ is created by a clockwise rotation of the body about the X, axis.

2.2 C(Coordinate Transformations

This section defines the coordinate transformation matrices needed for relating one
reference frame to another. In addition to the E, N, and T frames, the LN-39 Systems
Engineering Analysis Report [14] defines a platform frame ( P-frame) and a computation
frame (C-frame). The true frame, platform frame, and computation frame refer to the
same general coordinate frame. However the platform and computation frames are slightly
misaligned, by error angles, with respect to the true frame and with respect to each other.
The platform frame is the wander-azimuth orthogonal frame “attached” to the INS plat-
form such that P-frame coincides with the T—frame only when the platform is truly locally
level. The computation frame is the wander—azimuth orthogonal frame that is locally level
at the latitude and longitude indicated by the INS computer. Thus the C-frame coincides
with the T-frame only if the INS indicated position is free of error. The transformations

from the true frame to the platform and computation frames are defined [14] as

XIF = 1+e)(X)T (2.5)
0 ¢z ~ovr
¢ = | -9z 0 ox
oy -¢x O
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(X]°

I+ 60 [X]T (2.6)
0 §0z —6Oy
-607; 0 8Oy
0y ~60x O

@

The §@ and ¢variables are skew-symmetric matrices representing small misalignment
angles. This concept is used by Litton in the derivation of the INS error equations. The

coordinate transformation matrices for the £, N, and P frames are now defined

XM = cFx® (2.7)
cosa ~sina 0
Cg = sina  cosa 0 (2.8)
0 0 1
X1® = cRE™ (2.9)
—~sinLcosA sinA cosLcosA
cy = —sinLsinA ~cosA cosLsinA ~(2.10)
cos L 0 sin L
ck = ckc¥ (2.11)

—sin Lcos A\cosa +sinAsina sin LcosAsina 4+ sin Acosa cos L cos \
= —sin [sin Acosa —cos Asina sin Lsin Asina — cos A\cosa cos Lsin A

cos L cosa —cos Lsina sin L

One more coordinate transformation matrix, Cg , is required to project vectors co-

ordinatized in the B-frame onto the N-frame. That is
XV =cyix)? (2.12)

Because of the relative complexity of C§, it is developed here in some detail. Consider
an aircraft initially pointed north with wings level. The B-frame is then aligned with
the N-frame. Any arbitrary orientation of the B-frame relative to the N-frame may be
described by an ordered set of rotations about the B-frame axes. The B-frame is first

rotated about Z, by the heading angle 1. This intermediate orientation of the B-frame
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Figure 2.3. Body to Navigation Frame Transformation

defines intermediate frame U. Next, the B-frame is rotated about Y; by the pitch angle
#. This intermediate orientation of the B-frame defines intermediate frame V. Last, the
B-frame is rotated about X, by the roll angle ¢. This results in the new orientation of
the B-frame relative to the N -frame. This sequence of rotations is shown in Figure 2.3.

In terms of these three rotations, Equation (2.12) may be expressed as
XN =cffclcyx)® (2.13)

where

ch=chcycy (2.14)

Expressed in terms of the roll, pitch, and heading angles, the three component matrices

are
cosy siny O
C{}’ = —-siny cosy O
0 0 1
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-cosO 0 -—sind
cy = 0 1 0

sinf 0 cosé

-

(1 o 0

C}f = 0 cos¢p sing
_0 ~sin¢g cos¢
thus
cosipcosf sinypcosd +cosyPsinfsing sinsing — cos P sinfcos ¢
C’.3’= ~sin Y cosf cosycosd —sinysindsing cosysin ¢ + sin ¢ sin f cos ¢ (2.15)
sin —~cosfsin ¢ cos9cos ¢

A related quantity that is required in Chapter III is w¥ 5, the B~frame expression

of the N-frame to B~frame angular velocity vector. This vector is computed as

U 14 . 1B
0 0 )
wyp=C3Cylo | +CPlé] +|o | (2.16)
¥ 0 0
The result is
1 0 sind ¢
wig=1]0 cos¢p —singcosd ] (2.17)

0 sing cos¢cosd ¢

2.3 Kalman Filter Theory

A Kalman filter is a recursive data processing algorithm used to compute time-
dependent estimates of quantities of interest. When certain assumptions are made, the
Kalman filter algorithm has been mathematically proven to be optimal with respect to
several criteria [8]. The term “Kalman filter” is used to describe several variations of a
common algorithmic basis. The model of a continuous~time linear system with discrete~

time linear measurements is used here to present the Kalman filter concept.

The dynamics of the continuous-time system are assumed well modeled by a set of

n coupled first—order linear differential equations during some time period of interest, T.

2-7




Such a description of a physical system is termed a state-variable model. These equations

are written using vector/matrix notation as
x(t) = F(t)x(t) + B(t)u(t) + G(¢t)w(t) (2.18)

where F is a n—-by-n matrix describing the undriven (homogeneous) state dynamics, x is a
n-by-1 state vector, B is a n-by-r control distribution matrix, u is a r~by-1 deterministic
control input vector, G is a n—-by-s driving noise distribution matrix, and w is a s-by-1
stochastic driving noise vector. The matrices F, B, G, and the vector u are, in general,
piecewise continuous functions of time. The elements of the vector w are required to be
white with zero-mean Gaussian statistics. The term “white” means uncorrelated in time.

This concept is described mathematically by

E{w(t)}

0 (2.19)
E{w(t)w'(t)} = Q(t)é(z—¢) (2.20)

where the notation E{-} denotes ezpected value. Matrix Q is the s-by-s driving noise
strength matrix, and §(¢t - t') in the Dirac delta (unit impulse) function. Matrix Q is
symmetric, positive semidefinite, and whose diagonal elements represent the power spectral

densities, constant at all frequencies, of the corresponding scalar elements of w.

At discrete times ¢; € T, m noise—corrupted measurements are available. These
measurements, assumed to be linear combinations of the states and white discrete-time

measurement noises, are described by

z; = z(t;) = H(t;) x(t:) + v(t) (2.21)

where z is the m-by-1 measurement vector, H is the m-by-n measurement (state obser-
vation) matrix, x is the n-by~1 state vector. and v is the m—by-1 stochastic measurement
noise vector. The elements of v are required to be white with zero-mean, Gaussian statis-

tics described by

E{v(t)} = 0 (2.22)

E{v(t:)vT(t;)} = Y (2.23)
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where R is symmetric, positive definite, and may be interpreted as the covariance of v
at time t;. Furthermore, the measurement noises for each measurement type are usually
assumed uncorrelated with each other. This assumption results in a diagonal R matrix.
When R is diagonal, the measurements may be incorporated sequentially at each measure-
ment time. For a standard linear Kalman filter, the final result does not depend on the
order in which the measurements are incorporated.

The filter state estimate X is interpreted as the mean value of a Gaussian conditional
probability density function (PDF) with covariance P. The Gaussian requirement implies
that X is also the mode (most likely value) for the conditional PDF. This PDF is condi-

tioned on Z;, the measurement history through time ¢;. This conditional PDF is described
by

Ptz 1Z:) = [(2n)/2 [ B(e1) (7] " exp {—% (€ - =(¢4))T P ) € - R(t7)) } (2.24)

(Superscripts “+” and “-" appearing with ¢; are used throughout this thesis to indicate
“just after” and “just before” a measurement update, resnc.tively). The function of the
Kalman filter is to propagate this conditional probability density function forward in time
between measurements and to update the density function when measurements are avail-
able. The filtering process is started from the initial estimates of the state vector, Xo, and

covariance, Pg, where

|

%o = E{x(to)} (2.25)

i

Po E{[x(to) — %o [x(to) — %o]”} (2.26)

The state estimate and covariance are propagated from measurement time ¢ (or initial

time) to measurement time ¢ ; by (numerical) integration of

R(t/t;) = F()R(t/t;) + B(t)u(t) (2.27)
P(t/t;) = F()P(t/t;) + P(t/t)FT(t) + G()Q(t)GT(¢t) (2.28)
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The notation “t/t;” is used to indicate time ¢t in the interval [t;",ti‘ +1] where all mea-
surements through time ¢; have been incorporated in the filter estimates X and P. At

measurement times ¢;, these two quantities are updated using

K(t;) = P(t7)ET(t) [H(6)P() )BT () + R(t:)] (2.29)
R(tF) = R(67)+K(t) [z~ H(t)R(e])] (2.30)
P(t}) = P )~ K(tL)H(t)P(t]) (2.31)

The quantity K is called the Kalman filter gain. Note that K and P do not depend on
the history of the measurement vectors z,, z2, z3,...z;. This important fact allows the filter
gain and covariance to be precomputed. However, this holds true only for the case of linear
dynamics and measurements. The derivation of these equations is presented in Chapter 5
of reference [8]. Differences between the standard Kalman filter structure presented here

and the Kalman filter actually implemented for this research are discussed later.

2.4 Time Correlated Errors and Residual Characteristics

The basic Kalman filter presented above assumes all driving and measurement noises
are white. The plot of the power spectral density (PSD) of such a white noise is a hori-
zontal line over all frequencies; a white noise contains equal power at all frequencies. A
continuous—time white noise is therefore an infinite power process and thus cannot really
exist. “Whiteness” is still a valid and useful characteristic for many noise models provided
the white noise adequately models the real noise within the bandpass of the system of
interest. In cases where the time correlation of th. noise cannot be neglected, the concept
of a shaping filter is used to model the time correlation properties of the noise. Such a
noise is modeled by one or more additional states, x;, which are augmented to the basic
state vector. The Kalman filter described in this thesis involves three simple types of
shaping filters: the random bias, the random walk (Brownian motion), and the first—order

Gauss-Markov process.

The term random bias describes a quantity with an unknown, random, initial value

with a Gaussian PDF. The value of the quantity does not change after the initial time; it
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remains a constant hias. The differential equation describing this concept is simply
x(t)=0 (2.32)

with

x(to) = Xp, Xp € N[O,d’%ﬂ]

The term random walk is a synonym for Brownian motion. Since white noise is con-
ceptually the derivative of a Brownian motion process, the differential equation describing
random walk is

x(t) = w(t) (2.33)
Quantities that are known to be constant biases are frequently modeled, in the Kalman
filter design, with random walk shaping filters. In these cases, the “w(t)” appearing in
Equation (2.33) is a small strength pseudonoise employed simply to prevent the corre-
sponding elements of the covariance matrix and, in turn, the Kalman gain matrix, from
becoming and remaining zero. If the filter covariance associated with a particular state
becomes zero, then subsequent measurements will have no impact on the filter estimate of

that state.

The term first-order Gauss-Markov describes a process with exponentially decaying

time correlation. The differential equation describing such a process is
1
x(t) = —;x(t) + w(t) (2.34)

where 7 is the correlation time. The autocorrelation function and PSD plots for a first—-
order Markov process are shown in Figure 2.4. The first-order Markov process shaping
filter is seen to be a simple low~pass filter; it attenuates the high-frequency content of
the white noise. More complex (higher order) shaping filters may be synthesized to match
the PSD of almost any real noise, but no such filters were considered necessary for this

research.

The quantity [z; — HX] appearing in Equation (2.30) is called the measurement resid-
ual, r;. The residual vector is the difference between the actual measurement vector z;, at

time t; and the “expected” measurement vector, H(t;)X(t;). That is,

r; =r(t;) =z, - HX (2.35)
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Ideally, the statistics of the residual vector residuals are described by

E{r;} 0 (2.36)
E{rx]} = H(t)P@])HT () + R(t:) (2.37)

An example of such an ideal residual time history is shown in Figure 2.5. When all
significant processes, including time correlated noises, are adequately described in a state—
space model, and the Kalman filter based on this model has is properly tuned, the true

estimation error e(t) defined by
e(t) = X(¢t) - x(¢) (2.38)
can be shown to have Gaussian statistics described by

E{e(t)}
E{e(t)e” (1)}

0 (2.39)

I

il

P(¢) (2.40)

Thus a correctly tuned Kalman filter based on the complete state-space model is an unbi-
ased estimator; its estimates have zero mean error. The state covariance estimate, P(t),

propagated and updated by the filter is seen to be equal to the covariance of the true

estimation error.

2.5 FExtended Kalman Filter and Error State Concepts

In many cases, the dynamics and/or the measurements involved in a state-variable
model cannot be adequately described by linear equations. In such cases, the nonlinear

equations corresponding to Equations (2.18) and (2.21) are

x(t) = fx(t),u(t),t] + G(t)w(t) (2.41)
z(t,‘)

hix(t:), t:] + v(t:) (2.42)

where f is the nonlinear dynamics function and h is the nonlinear measurement function.
Note that both the dynamics driving noise and the measurement noise are still linearly

additive.
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The eztended Kalman filter provides a state estimation algorithm for such nonlinear
systems. It can be derived from the standard Kalman filter using a linear perturbation
procedure based on first—order Taylor series approximations [9]. The state and covariance
propagation from time ¢; to time #;,; is accomplished via (numerical) integration of the

equations

(t/t) = f£[R(t/t:),u(t), Y | (2.43)

It

P(t/t;) = F[t;R(t/6)|P(t/t:) + P(t/t)FT[6;R(t/t)] + G(1)Q(1)GT ()  (2.44)

where

x, u(t),t

Ft; X(t/t;)] = ol (2.45)

ox x=X(t/t;)

At a measurement time t;, the extended Kalman filter updates the state and covariance

using the equations

K(t:) = P(t7) B[t ()] {(Hits; 2067 P(¢7) BT (85 R(27)] + R(8)} (2.46)

X(t) = R(¢7)+ K(ti) {z: - h[X(¢]), 1]} (2.47)
P(t}) = P(t) - K(t) Hit; X)) P(E]) (2.48)
where
8h[x, t,']

H(t; %(t7)] = (2.49)

O0x  Ix=%(])

Note the structural similarity of the extended Kalman filter equations to the stan-
dard Kalman filter equations presented earlier. The major differences are that the non-
linear dynamics equation is used for propagation of the state estimates and the nonlinear
measurement equation is used in formulating the measurement residual. The matrices F
and H are, in general, functions of the state estimates as a result of the linearization pro-
cess. This state dependency prevents the filter gain and covariance estimates from being
precomputed. The accuracy and stability of an extended Kalman filter’s state and covari-
ance estimates are dependent on the adequacy of the linearization process for the system
of interest. As a result of the the approximations involved in the calculation of F and

H, the state estimates produced by an extended Kalman filter cannot be mathematically
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proven to be optimal. Even so, extended Kalman filters may work very well for certain
applications [9].
Another important concept used in this thesis is that of error states. Instead of

directly estimating the numeric value of some state, it may be more convenient to estimate

the error, §x, in the true value of that state relative to some nominal value x,. That is,
0x(t) = x(t) — x.(2t) (2.50)

and the Kalman filter estimate of §x is 8x. Since the nominal value is known for all ¢ € T,

the (indirect) filter estimate of the whole valued state is calculated as

2(t) = xn(t) + 5x(t) (2.51)

2.6 Simulation Software

All of the data processing described in this thesis is conducted with the aid of two
major software packages, MSOFE [1] and MATRIXx[6]. An overview of the purpose,

capabilities, and use of each of these software packages is provided below.

MSOFE is the acronym for the Multimode Simulation for Optimal Filter Evaluation
software package. MSOFE was jointly developed by the Avionics Laboratory of Wright-
Patterson AFB, Ohio, and Integrity Systems Inc. of Winchester, Massachusetts. It is
a multimode simulation tool for designing and evaluating integrated systems based on
optimal (Kalman) filtering techniques. The primary modes of use are Monte Carlo analysis
and covariance analysis. These two modes may be used separately or simultaneously. The
conceptual and mathematical basis of these two analysis techniques is described in reference
(8:325-341]. MSOFE is written in ANSII standard FORTRAN 77 and can be used on any
reasonably fast computer for which there is a FORTRAN 77 compiler available.

An executable MSOFE program consists of an executive routine, 56 fixed subrou-
tines, and at least 14 user—written subroutines. It is these 14 user subroutines that allow
MSOFE to be customized to handle almost any Kalman filter problem. The user sub-
routines required for this research involved a significant amount of original programming.
Although MSOFE was conceived as a simulation tool in which the simulated measure-

ments occur at synchronous intervals, it is easily modified to filter empirically recorded
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data where the real measurements occur asynchronously. MSOFE has two companion pro-
grams called PROFGEN and MPLOT. PROFGEN generates simulated trajectory data for
use in MSOFE simulations while MPLOT performs statistical calculations and provides
high quality plots of MSOFE and PROFGEN output. PROFGEN was not required in
this research and MPLOT was not used because it requires commercial plotting routines
which are not available on AFIT computers. More information on the use and capabilities

of MSOFE is available in the MSOFE User’s Manual (1].

MATRIXx is a commercial software product developed by Integrated Systems Inc.
of Palo Alto, California [6]. It is a powerful, general purpose, interactive program for
the computer-aided design and analysis of control systems. MATRIXx implements an
interpreted programming language similar to FORTRAN and it can read data files created
by FORTRAN programs. Only a small portion of its capabilities were used in thisthesis
effort. MATRIXx was used for interpolation and plotting of the MSOFE output. Several
small FORTRAN and MATRIXx programs are used to handle routine tasks such as reading
CIRIS data tapes, producing correctly formatted input data files for the MSOFE runs, and
plotting data.

2.7 Summary

This chapter introduces the spatial reference frames, Kalman filter theory, and sim-
ulation software used in this research. The primary function of CIRIS is to estimate
position and velocity quantities. The WGS 84 geodetic reference system is chosen as the
basic reference frame for defining position and velocity. The WGS-84 system defines the
earth-centered earth-fixed ( E-frame) rectangular coordinate frame and the relationship
between E-frame coordinates and geodetic latitude, longitude, and altitude coordinates.
Several additional reference frames are required to simplify development and specification
of the Advanced CIRIS filter. These include the north—west—up local-level navigation
frame ( N-frame), the true frame (T-frame), the platform frame ( P-frame), the computer
frame (C-frame), and the body frame ( B-frame). These frames and the transformations

hetween them are specified in Sections 2.1 and 2.2.

The concept and mathematical structure of the standard linear Kalman filter is
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discussed in Section 2.3. This discussion is augmented with the concepts of time correlated
errors, ideal measurement residual characteristics, the extended Kalman filter, and error

states in Sections 2.4 and 2.5.

The results presented in Chapters IV and V are obtained with the aid of two major
software packages. The first is the Multimode Simulation for Optimal Filter Evaluation
(MSOFE) program. Standard MSOFE subroutines implement the propagation and mea-
surement processing procedures generic to any Kalman filter application while additional,
user-written, subroutines customize MSOFE for a particular application. The second soft-
ware package is MATRIXx, a control system design and analysis program. MATRIXx is
used here only for data interpolation and data plotting. These two software packages are

described in more detail in Section 2.6
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III. 70-State Filter Description

The Advanced CIRIS filter described in this chapter is basically identical to the 70-
state filter described by Solomon [13] except for four significant changes. The first change
is that the measurement models are developed using an extended Kalman filter formulation
rather than a linearized Kalman filter formulation. The second change is that the filter is
updated with barometric altitude measurements in addition to the transponder range and
range-rate measurements. The third change is that the atmospheric propagation delay
is modeled as being range-dependent rather than range-independent, and that the atmo-
spheric delays associated with the different transponders have non-zero correlation. The
fourth change is the compensation for the position and motion of the CIRIS interrogator
antenna relative to the INS. In the past, this lever arm correction was provided by the

CIRIS II software.

3.1 Notation

The primary function of the filter is to produce accurate estimates of the position
and velocity of the CIRIS LN-39 INS during a specified time interval. The mathematical
equations which describe the filter's computations require rather complex notation. This

section defines terms and explains notation.

The measurements processed by the filter are range and range-rate measurements
provided by the Cubic Range and Range-Rate Subsystem (RRS) and a barometric altitude
measurement provided by the central air data computer (CADC). The principle compo-
nents of the Cubic RRS are the transponder electronics, transponder antennas, interrogator
electronics, and interrogator antenna. The filter estimation of the position and velocity of
the INS requires estimates of the position and velocity of the transponder antennas and

the interrogator antenna.

Let the position vectors of the j** transponder antenna, the interrogator antenna,

and INS be denoted by Pr,, P4, and Py, respectively. In the E-frame, these positions




are shown in terms of their components as

E E E
Pﬁ. = | 17, Pi=1vy, P¥ = Yr
Zr Z4 Zr

’

The familiar “dot” (') notation is used to indicate differentiation with respect to time.

Thus the E—frame velocities of these three points are denoted as

. E . E . E

4YTJ- 4YA IYI
PT, = YTJ- Py=| Yy P =Y

Zr, Z4 Zr

J

The “tilde” (7) symbol is used to indicate measured or calculated quantities where the mea-
surement or calculation process is assumed to introduce error. For example, transponder
positions are provided to the filter from a database containing the surveyed (measured)
transponder WGS 84 lati.u ., longitude, and altitude. The INS calculates its own position
based on its initializati_a and subsequent inertial measurements. The interrogator antenna
position is calcuiated relative to the INS position assuming a fixed B-frame offset vector
and knowledge of the aircraft orientation. These measured or calculated quantities are

denoter as

- B - E - E
XT,. XA X1
=E ~ ) ~ ~E
P, = | Yr, Pa=| Y, Pr=|Y;
ZT, Z4 Z;

Error (difference) quantities are indicated with a deita (§) prefix. For example, the error

in the indicated INS position relative to the true INS position is denoted as

E _ qE E
§X; [ % Xi
§Yr =| Y - v
§2Z; Z; Zr

Finally, filter estimates of a quantity are indicated by a “hat” (7) symbol. For example, if

the E-frame X, Y, and Z errors in the INS position are three of the filter states, the filter
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estimates of these states are denoted as

N =R

I

The (indirect) filter estimate of the true INS position is calculated by subtracting the filter
estimate of the error in the INS indicated position from the INS indicated position. This

concept is formulated as

- E - E e E
}7[ = }-’1 - | &Y
Z[ 21 (;21

The symbolic order of operations is important. For example, §Z; indicates the filter
estimate of the error in the indicated INS velocity along the Z axis while §Z; indicates the
time rate of change of the filter estimate of the error in indicated INS position along the

Z axis. .

3.2 Error State Vector

This version of the Advanced CIRIS filter models 70 error quantities. The error
state vector is partitioned into four subvectors which group related error states. The
total error state vector is denoted as §x. The subvectors are defined as follows: §x;
contains the 13 general INS dynamics errors such as position, attitude, velocity, and vertical
channel errors; x, contains 12 additional INS gyro and accelerometer errors; §x3 contains
3 baro-altimeter errors; and §x4 contains all 42 transponder related errors. While many
of the individual elements of 6x are defined along a specific axis of either the T-frame
or the E-frame, others are defined along time varying line—of-sight directions or do not
correspond to a spatial direction at all. Thus it is not correct to think of the whole §x
vector as bheing coordinatized in a particular 3—dimensional spatial reference frame; the
elements of §x are the coordinates of a point in a T0-dimensional error state-space. In
general, the elements of subvectors 8§x;, §x;, and §x3 are defined relative to the T-frame

while the elements of subvector §x4 are defined relative to the F-frame. The individual
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elements of §x and their associated initial 1o value are defined in Appendix A, Tables
A.1 thru A.6. The most significant error states, those in subvectors §x;,6x3, and §x4, are
described in more detail below. The elements of error state subvector §x;, while necessary
for the completeness of the INS error model, are more difficult to visualize. For more
information on these error quantities the reader is referred to the Litton LN-39 Systems

Engineering Analysis Report [14].

3.2.1 INS Primary Error State Subvector The errors in the INS indicated position
and platform wander angle are modeled by the four error states §@x, 6Oy, 60z, and
8h. Error states §@yx, §Oy, and §Oz are the error angles appearing in Equation (2.6).
Together, they define the INS latitude, longitude, and platform wander angle errors, while
error state §h defines the INS altitude (vertical position) error. Their relation of the §@ er-

ror angles to the more familiar latitude (6§ L), longitude (§\), and wander angle (§a) errors is

§L sina cos a 0 Oy
X\ | = | cosasecL —sinasecL 0 50y (3.1)
oh 0 0 1 Sh
and
da = —(cosatan L)§Ox + (sinatan L) Oy + 60z (3.2)

These equations are taken from the Litton LN-39 Systems Engineering Analysis Report
[14]. The error quantity §a is explicitly computed to correct the INS indicated wander angle
for use in calculating the state dynamics matrix and various coordinate transformation

matrices.

The latitude and longitude errors shown in Equation (3.1) are in angular units (radi-
ans). The transformation which converts these errors to linear distance units coordinatized

in the N-frame is

N
§N (R + h) 0 0] szL
W | = 0 —(R+hjcosL 0 || 6 (3.3)
§U 0 0 1] | sn
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where

R=A(1- fsin’L) (3.4)

is the radius from the center of the WGS 84 ellipsoid to a point on its surface at latitude
L. When Equations (3.1) and (3.3) are combined, the result is

N
§N (R+ h)sina (R+h)cosa O 60x
sw =| —(R+h)cosa (R+ h)sina 0 60y (3.5)
ou 0 0 1 dh

The transformation matrix, T%, appearing in Equation (3.5) is used in the similarity
transformation for transforming the filter computed covariances associated with 6@ x, §0Oy,

and éh into the corresponding N -frame covariances.

The error in the INS platform orientation relative to the true local-level plane is
modeled by the error states ¢ x, ¢y, and ¢z. These three error states are the misalignment
angles appearing in Equation (2.5). Together, they describe the platform tilt relative to
the T-frame.

The error in the INS indicated velocity is modeled by the error states 6Vy, §Vy, and
8Vz. These three error states are defined as the components of the difference vector hetween
the INS computed (C-frame) velocity and the true (T-frame) velocity. These three error
states may be transformed into equivalent N-frame velocity errors by compensating for

the platform wander angle. The transformation is

AN
&N cosa —sina 0 Vx
W = | sina cosa 0 §Vy (3.6)
§U 0 0 1 §Vy

The transformation matrix, C¥, appearing in Equation (3.6) is used in the similarity
transformation for transforming the filter computed covariances associated with §Vx, §Vy,

and §Vz into the corresponding N-frame covariances.




The three error states §h;, 653, and §54 model errors in quantities used internally by
the INS for calculating vertical channel aiding gains. The LN-39 requires baro-altimeter
aiding for stabilization of the vertical channel. Figure 3.1 is taken from reference [14] to
illustrate the LN-39 vertical channel error model. The INS indicated altitude is lagged
(held) for one second before being compared to the baro-altimeter indicated altitude. This
one second wait is used to compensate for the delay inherent in baro-altimeter operation.
The difference signal, Tz(t,-_l )— -ﬁb(ti), is used by four different vertical channe] aiding loops
within the LN-39. The aiding gains for these loops are designated K;, K, K3, and Ay.
They are nonlinear functions of the rate of change of the baro-altimeter indicated altitude,

hy. The Litton LN~39 Systems Engineering Analysis Report defines these gains as

K, = % (3.7)
K, = z—iﬂ+% (3.8)
Ks = 32-3- (3.9)
K, = Kg‘% (3.10)
where
A = |k (3.11)

Ao+ 8 if Ag < A
Ao = Ao -8 if Ao > A and Ag > 38 (3.12)
30 ft/sec otherwise (and initially)

100 [1 + (AAOY] (3.13)

Note that Ay changes in discrete increments (0,48, or -8) each time it is recalculated.

>
1

This implies the aiding gains also change in discrete increments.

The dynamics matrix elements for error states dhy, 653, and 654 are listed in Ap-
pendix A, Tables A.7 through A.9. Note that the differential equation for 6§54 contains

discontinuities due to its dependence on K4. Within the filter software, the aiding gains are
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Figure 3.1. LN-39 INS Vertical Channel Error Model
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recalculated only after each measurement update cycle so that the §5, differential equation

is continuous throughout each propagation cycle.

The initial 1o values for the 13 states in subvector §x; are specified in Appendix A,
Table A.1.

3.2.2 Baro-Altimeter Error State Subvector The baro-altimeter error is modeled
by the three error states §hyy, dhy, and dhy3. State Ay, represents the time-correlated
component of the baro-altimeter error. It is modeled with a first—order Markov shaping
filter. State Ay, represents the constant bias in the baro—altimeter output. It is modeled
with a random bias shaping filter. State dhy3 represents the altitude scale factor for the
altitude dependent bias in the baro-altimeter output. It is also modeled with a random
bias shaping filter. The total baro—altimeter error, §hy, is defined in terms of these three

error states and the true altitude b as
Shy(t) = sz(t) —~ h(t) = §hy1(t) + dhoo + h(t) Shss (3.14)

The initial 1o values for these three states are specified in Appendix A, Tables A.3. The
dynamics matrix elements are listed in Appendix A, Tables A.7 through A.9.

3.2.3 Transponder Error State Subvector The transponder related errors are di-
vided into those common to all transponders and those concerning individual transponders.
The common element in the range and range~rate measurements from all transponders is
the interrogator. The error common to all range measurements due to an interrogator
calibration bias is represented by error state § E,.. The error common to all range~rate
measurements due to an interrogator calibration bias is represented by error state § E..

Both error states are modeled with random bias shaping filters.

The errors associated with an individual transponder include survey (position) errors
and a range measurement error caused by atmospheric propagation delay along the line-
of-sight between the transponder and the interrogator antennas. The survey errors for
transponder T; are represented by error states JXTJ, 6Yr;, and 6Zr, which model the
components of the position error along the X,, Y., and Z, axes, respectively. These three

error states are each modeled with random bias shaping filters. The range error due to
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the atmospheric propagation delay is represented by error state § Ar;. This error state is
interpreted as a scale factor; the range error is the product of the scale factor and the range.
Error state Ar; is modeled with a first—order Markov process shaping filter. These four
types of error are illustrated in Figure 3.2. The driving noises for the § Ar; error states are
modeled as being correlated with each other with a positive correlation coefficient. This
additional tuning parameter provides a crude model for the commonality of atmospheric
conditions along the lines—of-sight to each transponder. The initial 1¢ values for these 42
error states are specified in Appendix A, Tables A.4 through A.6. The dynamics matrix
elements are listed in Appendix A, Tables A.7 through A.9.

The filter model includes a § X7, 8YT,, § ZT,, and § AT, error state group for each of
ten different transponders (j = 1,2,...,10). However, a typical CIRIS test flight involves
more than ten different transponders. The filter software includes a switching subrou-
tine which “timeshares” each of the transponder error state groups between two different
transponders. This permits the filter software to process measurements from up to twenty
different transponders. At any given time, one member of each transponder pair is “active”
(owns the error state group) while the other is “inactive.” If the filter receives a measure-
ment from the inactive transponder, the switching subroutine saves the four error state
values associated with the active transponder and reloads the four error state values previ-
ously stored for the inactive transponder. It then clears the four rows and four columns of
the covariance matrix associated with these error states, saving only the diagonal elements,
and resets the four diagonal elements in these rows/columns to their previously stored val-
ues. The inactive transponder is thus activated while the previously active transponder is
deactivated. This procedure doubles the number of allowable transponders at the expense
of losing covariance information. The off-diagonal covariance information cannot be stored
and later reloaded because any of the ten transponders pairs may “switch” at any time,
thus rendering the cross—correlation information invalid. The frequency of switching is
minimized by pairing widely separated transponders so that it is unlikely that the inter-
rogator will request measurements form both members in any short (10-30 minutes) time

interval.




 Z,

Figure 3.2. Relative Positions of Transponder, Antenna, and INS
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3.3 Error State Stochastic Differential Equation

The dynamics of the error state vector are described by the first—order, linear, piece-

wise continuous, matrix differential equation
5x(t) = F[t; x(t)] 6x(t) + w(t) (3.15)

This equation is piecewise continuous because the elements of the F matrix that depend
on the baro-altimeter aiding gains experience discontinuities at measurement times. The
elements of the vector w represent the zero-mean white noises, if any, driving each state.
The strengths of these noises are represented by a matrix Q which is defined in accordance

with Equation (2.20).

It is useful to rewrite Equation (3.15) to illustrate the interdependencies of the error

state vector partitions. The partitioned form of Equation (3.15) is

r 6!1 ] [ Fl,l Fl‘z F1|3 0 1T 6x1 ] ( w1 ]
5x 0 F 0 0 éx w
= 22 1+l (3.16)
6x3 0 0 F3'3 0 6x3 W3
[ 6xa ] | 0 0 0 Fua||6x]| | wal]

This form of the dynamics matrix shows that subvectors §x3, §x3, and x4 do not interact
during the filter propagation cycle. Cross—coupling of these subvectors occurs only during
the measurement update procedure. The non-zero elements of submatrices F; 1, F; 2,
F\ 3, F3 2, and F3; are given in Appendix A, Tables A.7 through A.9. The elements of the
submatrices Q,, Qs, Q3, and Q,, which correspond to the four partitions of the w vector,
are given in Appendix A, Table A.10. Pseudonoise is not used with any of the random bias
shaping filter states because analysis using real data indicated the covariances associated
with these states remained non-zero throughout the required time-interval. In general,

pseudonoise with an appropriately chosen strength should be used with random bias errors.

3.4 Measurement Models

The filter state estimates are periodically updated with three types of measurements.
A transponder interrogation occurs approximately once per second; a successful interroga-

tion provides a range and a range-rate measurement from one of the transponders in the
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current transponder set. A barometric altitude measurement is made at the same time
as each transponder interrogation. Therefore the measurement vector z can be written in
terms of its three components as
z0 ()
z(t:) = | z:(t;) . (3.17)
Zh, (L)
where the three components are, from top to bottom, the transponder range measure-
ment, the transponder range-rate measurement, and the barometric altitude measurement.
These three measurements are processed one at a time (scalar update) by the MSOFE soft-
ware. The U-D factorization scalar update procedure used by MSOFE (1] requires a scalar
equation of the form of Equation (2.42) be specified for each of the three measurement
types. Thus
ho(x(t:), 8]
hix(t;),t:] = | hi[x(t),t] (3.18)
hp, [x(:), i
where h,, h;, and hj, are each scalar valued equations. Each of these three functions has a

corresponding 1-by~70 observation matrix row defined in accordance with Equation (2.49).

All range and range-rate measurements are defined in terms of E-frame coordi-
nates. They must be projected into the error state vector space for correct updating of the
INS error and baro-altimeter error states. This projection operation transforms the INS
and baro-altimeter elements of the E-frame observation matrix into the equivalent error
state—vector space observation matrix. The form of this transformation is presented in
Appendix A, Table A.11 for the range measurement and in Table A.12 for the range-rate

measurement.

3.4.1 Range Measurement The range measurement is provided by the Cubic RRS.
Ideally, the range measurement is the line—of-sight distance between the transponder and
interrogator antennas plus a known bias caused by propagation delay in the cables connect-
ing the antennas to their associated signal processing electronics. The range measurements
used in this thesis research contain an open-loop correction for the cable propagation delay

as provided by the CIRIS II software [11].
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The following discussion develops the range measurement model used in the Ad-
vanced CIRIS Kalman filter. As before, let the E—frame position vectors of the j#
transponder antenna, the interrogator antenna, and INS be denoted by PE)_, Pﬁ' , and
P¥ | respectively. The line-of-sight range, R;, between the two antennas is a nonlinear

function of these position coordinates. The functional form of this Euclidian distance is

R; = |PE - P§| = (X1, - X4)* + (Y, - Ya)? + (21, - Z4)’ (3.19)

This nonlinear dependence dictates the use of the extended Kalman filter measurement

update procedure, Equations (2.46) through (2.49).

The range measurement function, h,, is defined as the sum of the true line-of-
sight range, R;, the range dependent atmospheric propagation delay, R;dAr,, and the
interrogator range measurement calibration bias, § F,.. This measurement is corrupted by
a random measurement noise, v,. In accordance with Equation (2.42), the assumed model

of the range measurement provided by transponder T; is

zf(ti) =hr[tivx(ti)]+vr(ti) (320)

where

he[t;, x(t:)] = R;[x(8:)] + Rj{x(t:)] § AT, (t:) + S Eve(ts) (3.21)
The range measurement noise is modeled as a zero-mean white noise. The range measure-
ment noise strength is specified in Appendix A, Table A.14.

The corresponding range observation vector, H,, is calcula.@ using Equation (2.49).
The result, shown here as the bracketed terms in the product H,s;:, is

H,(t; R(67)6x(t) = + | T2 T2 6%y + | 2| 67y, + | 24 521,
R, | R, ~ R,
Xr - X4 ~ Yr, < ¥a] ~ Zr — 24 ~
—-[ TA A]é‘.l_ TJA A 6Y]— '1"',A A 5 !
1] Rf RJ
+ [R)] 84r, + (1] 6E.. (3.22)

Note that h, and H, both depend on the E-frame position of the interrogator antenna,
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but the position error states estimated by the filter are for the INS position. The antenna
location must be calculated using the filter estimates of the INS position error and knowl-
edge of the offset (lever arm) between the INS platform and the interrogator antenna. The
offset vector is constant in the B-frame but depends on the aircraft position and orien-
tation in the E-frame. This offset vector, M, is illustrated in Figure 3.2. It is defined
by

B B B
XM Xy X4
M = vy | =Y | -] Ya (3.23)
Y Zr Za

E
XM(Lv A1h7w107¢)

CECHRIMI® = | Yp(L, A h,9,0,) (3.24)
ZM(L7/\1 h’1 1/’19, ¢)

(M)

The E-frame position coordinates of the interrogator antenna are estimated by the filter

software as
_ NE _ 1E _ 4E
Yul =l V| +| ¥u (3.25)
24 ZI ZM

The E-frame components of M are determined from Equation (3.24) using filter estimates

of the six arguments.

3.4.2 Range-Rate Measurement The range-rate measurement is also provided by
the Cubic RRS. Ideally, the range-rate is simply the magnitude of the relative velocity
between the transponder and interrogator antennas. This ( E-frame) range-rate is found
by differentiating Equation (3.19). The result is

. dR R, dXr, OR; dX4 OR, dZr, OR, dZa
tl= - = J J J J L] fl
Ryfx(t). 8] = = 9Xr, dt | 0Xa dt | T 0Zr, dt | 024 dt
Xr, ~ X4\ ¢ Yr. = Ya\ . (ZT. —ZA) .
= (At g, (A g, - (2 2A) 2, (326
() - (Bt fa- (Fg ) 2 oo
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The range-rate measurement function, h;, is defined as the sum of the true line-
of-sight range-rate, Rj, and the interrogator range-rate measurement calibration bias,
§E;.. This measurement is corrupted by a random measurement noise, v¢;. In accordance
with Equation (2.42), the assumed model of the range-rate measurement provided by
transponder T; is

z:(t:) = he[ti, x(t:)] + vs(ts) (3.27)

where
heti, x(8:)] = Rj[x(t:)] + 6 Ese(t:) (3.28)
The range-rate measurement noise is modeled as a zero-mean white noise. The range-rate

measurement noise strength is specified in Appendix A, Table A.14.

The corresponding range-rate observation vector, H;, is calculated using Equa-

tion (2.49). The result, shown here as the bracketed terms in the product H.bx, is

H. [t (7)) 6x(t:) =

(Xz, ~ Ra)?X 4+ (X1, = Xa)(Pr, - V)W 4 + Rz, - Ra)(Zr, - Z4)2 4 - R;T_X,,] e
= - A
7

F o~ ~ o~ a = ~ ~ L2 ~ ~ A ~ = ~, =
(Pr, - Pa)( Rz, - Ra)Xa + (Pr, — Pa)?Va+ (Vr, — Ta)(Zr, - Za)24 - R Y A] &
- - I
.

r o~ ~ ~ “ = - ~ ~ = ~ a .3 ~ =
(ZTj - ZA)(XT_’. —Xa)Xa+ (ZTJ. - Z’A)(Y:rJ -YA)Ya+ (ZTJ. ~ZaA)'Z 4 - R»}JZA] 67
- ~ I
75

- —

6Zr1 + [1]5E,’-c (3.29)

=~ [Zr,-2
”"[‘LR—T—A

J

Note that h; and H; depend on the E~frame velocity of the interrogator antenna as well
as well as its E-frame position, but the velocity error states estimated by the filter are for
the INS velocity. The E-frame velocity of the interrogator antenna is found as follows.
Since

(P4 = [P1}f + [M)* (3.30)
then

[PA)f = [P1)® + [M)® (3.31)
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Also, since
[M)F = cE(M)P (3.32)
then
(M)E = ChlM)B (3.33)

because the B-frame representation of M is constant. The derivative of CE is found using
the identity

~E

Cp=CEns, (3.34)

where 285 is the skew—symmetric form of w8, the E~frame to B-frame angular velocity

vector expressed in the B-frame. Because wg g i3 not directly available, it is calculated as

i

B B B
WEB WEN + WNB

= CRuwiy+wis (3.35)

where wy  is computed from the latitude and longitude rates and w% 5 is computed from

the heading, pitch, and roll rates. These two angular rotation rate vectors are

Acos L - é + ¥sind
“’gN = L wﬁB = | fcos¢ ~ Ysingsinb
Asin L 9sin¢+ z/}cos¢>coso

When these equations are combined, and filter estimates used for all needed matrix ele-
ments, the filter estimate of the E-frame velocity of the interrogator antenna is computed

as

~ AE ~ E B
Xa X1 Xm

= E -~ - ~ F—~B

(Pal"= | Ya| =|Yr| +Cgf2p| Ynu (3.36)
Z4 Z1 Iym

3.4.3 Barometric Altitude Measurement The altitude measurement is provided by
the barometric altimeter. Ideally, this measurement indicates the true altitude of the INS.
In order to account for limitations inherent in the estimation of altitude based on baro-
metric pressure and other error sources, the baro-altimeter output is modeled as the sum
of the true altitude, a constant bias error, a time correlated bias error, a scale factor error,

and a random measurement noise, vp,. In order to eliminate the true altitude from the
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measurement and isolate the altitude errors, the measurement presented to the filter is the
difference between the barometric altitude and the INS indicated altitude. In accordance

with Equation (2.42), the assumed model of the barometric altitude measurement is

zh,(ti) = hp, [ti, x(8:)] + va, (t:) (3.37)
where
ha, [t x(5)] = halts) - A(t) (3.38)
= [A(t:) + 6hs(t:)] — [A(t:) + 6R(t;)] (3.39)
= Shy(t,) - 8h(t;) (3.40)
= [6hpi(t:) + 6hsy + A(t:)6Rsa] — R (3.41)

The corresponding barometric altitude observation vector, Hy,, is calculated using Equa-

tion (2.49). The result, shown here as the bracketed terms in the product Hh,lg;:, is

By, [t R(67))8%(t:) = (18R (t) + (1] BRoa(t:) + [R(E)] Bhaa(t:) — (1]8R (3.42)

The baro-altimeter output is sampled within 50 milliseconds of each transponder
interrogation. Since it is not separately time-tagged, the baro-altimeter measurement is

assumed to have the same time-tag as the associated transponder range measurement [11].

3.5 Summary

This chapter presents the structure of the 70-state, MSOFE-based, extended Kalman
filter that is the current incarnation of the Advanced CIRIS filter. The (error) state vector
is partitioned into four error-state groups. The first group contains 13 INS position,
velocity, platform tilt, and vertical channel aiding errors; the second group contains 12
gyro and accelerometer errors; the third group contains three baro-altimeter errors; and the
fourth group contains 42 transponder calibration, position, and atmospheric propagation
errors. Of the 42 transponder states, 40 represent ten sets of the four error states associated
with each of up to ten different transponders. The filter software permits the use of up to

twenty different transponders through a state time-sharing procedure.
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The filter uses three types of measurements. Range and range-rate measurements are
provided by the transponders, while barometric altitude is provided by a baro-altimeter.
The range and range-rate measurement functions are nonlinear. Because of the position
offset between the CIRIS antenna and the INS, a procedure for compensating for “lever-

arm” effects is developed.
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IV. 70-State Filter Evaluation: Ground Test Data

This chapter describes the use of the 70-state filter to process real measurements

collected during a slow speed ground test.

4.1 Data Collection Procedure

The data used in this analysis was collected on 21 July 1989, during a series of tests at
the 6585t" Test Group’s Rocket Sled Test Track. The CIRIS LN-39 INS, transponder inter-
rogator, baro—altimeter, and HP-1000 computer were placed in a Recovery Support Vehicle
(RSV). Starting from a known point on the track, the RSV was driven either north or south
along the track while the CIRIS equipment recorded the INS data, barometric-altitude,
and the transponder measurements. At the same time, the position of the RSV was
recorded by an independent track data acquisition system (TDAS). Both sets of recorded
data were referenced to a common IRIG time base. The starting configuration is illustrated
in Figure 4.1. The offset dimensions between the INS and the TDAS sensor are listed in
Table 4.1.

This series of tests involved six different transponders. The transponder ID’s and
their corresponding WGS 84 coordinates are listed in Table 4.2. The position of these
transponders relative to the track is shown in Figure 4.2. The initial INS alignment lo-
cation and starting point for each of the northward runs was 32° 53’ 6.5648"” N latitude,

106° 8’ 59.6288" W longitude, and 3991 feet altitude.

The measurements from transponder 211 are not used because the range measure-
ments contain an anomalous oscillation with a period of about 90 seconds. The oscillation
is not apparent in the associated range-rate measurements. The oscillation is shown in
Figure 4.3. This plot is obtained by using the TDAS indicated positions to calculate the
expected range to the transponder at each point along the track. The expected range
is then subtracted from the measured range at each measurement time. The bias shown
in Figure 4.3 is most likely due the combination of an error in the surveyed position of
transponder 211 and the offset hetween the CIRIS antenna and the TDAS sensor. However

the oscillation cannot be explained at this time. The oscillation is not present when the
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Figure 4.1. Equipment Configuration for the CIRIS/RSV Tests

Table 4.1. INS Position Offsets

South—-to~-North Run

North—-to—-South Run

23.02 ft North
-5.69 ft East
4.75 ft Above |

-23.02 ft North
2.60 ft East
4.75 ft Above




Table 4.2. Transponder Locations for the CIRIS/RSV Tests

Transponder ID Latitude Longitude Altitude
005 33°01' 36.1472" | —106° 08’ 20.7404" | 4339 ft
102 32° 55’ 58.5986"” | —106° 08’ 50.3339" | 4074 ft
181 33° 44/ 58.035" —-106° 22’ 14.630" 7932 ft
211 33° 17 55.999" -106° 31 44.311” 8842 ft
212 32°47'16.418” | —105°49'15.474" 9202 ft
216 32°42/12.235" | —106° 07’ 38.907" 4481 ft

RSV is stationary. In two other track runs in which the RSV speed was purposely varied,
the frequency of the oscillation increased in proportion to the speed. In computer runs
where the transponder 211 range measurements are processed by the filter, the oscillation
appears in plots of the measurement residuals and in both the transponder and INS po-
sition error states. An example of the oscillating residuals is shown in Figure 4.4. The
dashed lines in this plot are the filter calculated residual 1o bounds. The oscillation is
also apparent in the transponder 211 range measurement residuals of the current CIRIS II

filter.

{.2 70-State Filter Performance

The original objective for the use of this ground test data was to validate the struc-
ture of the filter’s error model by tuning certain filter parameters (noise strengths and
correlation times) so that the measurement residuals appeared “correct.” That is, the
residuals should appear white, zero-mean, with variance as predicted by the filter. If this
is achieved, and the filter's error model is sufficiently valid, then the differences between
the position and velocity estimates of the filter and TDAS should be minimized. The
justification for this statement is that TDAS-indicated position and velocity are derived
from precisely surveyed points along the length of the track; therefore, they are best avail-
able measurements of the true quantities. However the poor geometry of the transponders
relative to the RSV trajectory partially frustrated this goal by limiting the observability
of important error states. The lack of observability made the filter error state estimates

very sensitive to the initial error state covariance estimates. The parameters considered
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Figure 4.3. Anomalous Range Measurement Oscillation, Transponder 211
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Figure 4.4. Oscillating Range Measurement Residuals, Transponder 211
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least well known are: (1) the driving noise strengths the atmospheric propagation delay
scale factors, (2) the correlation coefficients for these driving noises for each transponder
pair, (3) the correlation times for these driving noises, (4) the driving noise strength for
the baro-altimeter correlated noise, and (5) the correlation time for the baro-altimeter

correlated noise.

Starting with the intial parameter values described in Appendix A, the TO-state
filter was used to process data from three different track runs, two south-to-north and
one north-to-south. Different combinations of tuning parameters and initial covariance

estimates were tried for the five items mentioned above.

The two sets of estimates are compared at time points corresponding to filter mea-
surement update times. Because the TDAS sampling times did not coincide with the filter
measure:nent update times, the TDAS positions and velocities were interpolated at the
filter update times. This interpolation is accomplished using the MATRIXx cubic spline
function. After the interpolation is completed, the filter position estiiates are corrected

for the offset in the INS position relative to the TDAS sensor.

For the northward run, the position correction was made as follows. A positive
latitude error means that the filter latitude estimate is too far north. A positive longitude
error means that the filter longitude estimate is too far east. A positive altitude error
means that the filter altitude estimate is too far up. The position of the INS relative to
the TDAS sensor is shown in Table 4.1. Since the track heading relative to true north is
constant throughout the length of the track, these position offsets are also constant. For
the northward and southward runs, the appropriate offset quantities were subtracted from

the filter estimates in order to translate the filter estimates to the TDAS sensor location.

The area where the filter is most sensitive is the baro-altimeter error model. The
separation of the baro-altimeter error into three separate error states results in observ-
ability problems when, as in this case, the test trajectory is of short duration and involves
only negligible altitude changes. When all three states were included in the filter, the sum
of the constant and time-correlated biases tended to grow increasingly positive while the

scale factor error grew increasingly negative. The result was the sum of the three errors
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stayed in the range of 100 to -100 feet while the individual error states were divergent.
This situation was corrected by using only one state to model the baro-altimeter error
for the ground test data. The scale factor error state was eliminated and the other two
error states combined into a first—order Markov error state with a correlation time of 2000
seconds and a driving noise variance of 4 ft2. The initial variance for this single baro-
altimeter error state and for the INS altitude error state were each reduced to 2500 ft2.
Even with the simplified baro-altimeter error model, the filter altitude estimates remain

biased relative to the TDAS indicated altitude, as is shown in Figure 4.7.

The filter estimates are also sensitive to the atmospheric propagation delay error
model parameters. The filter is most sensitive to the assumed driving noise strength and
less sensitive to the assumed correlation time and driving noise correlation coefficient. The
assumed driving noise variance is reduced to 4 ft2 from the value shown in Appendix A.
This reduction had a smoothing effect on the INS and transponder position error estimates

as well as the atmospheric delay estimates.

The data set discussed here is designated Track Run E. Track Run E started at
IRIG time 54826 and ended at IRIG time 55722. This starting time is approximately
50 minutes after the INS was aligned. Appendix B contains the plots of the recorded
data. The TDAS position and velocity data for Track Run E is plotted in Figures B.1
and B.2. The LN-39 INS indicated position, velocity, and acceleration for Track Run E
are plotted in Figures B.3, B.4, and B.5. The baro-altimeter, transponder range, and
transponder range-rate measurements for Track Run E are plotted in Figures B.6 through
B.12. The baro-altimeter discretization increment is 2.5 feet. The barometric altitude rate

information is synthesized from the barometric altitude data.

The filter’s estimates of position and velocity are compared to the TDAS indicated
position and velocity in Figures 4.5 through 4.10. All of these plots show the filter estimate
minus the corresponding TDAS measurements The latitude difference varies between 0.5
and -11.5 feet with the larger magnitudes in the last half of the run. The longitude
difference varies between 16.5 and -7.0 feet with the larger magnitudes in the first half of
the run. The altitude difference varies between 7.8 and 26.5 feet with the larger magnitudes

in the second half of the run. The midpoint of the run is significant because that is when
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the RSV passed by transponder 102, at time 55275. This is the only transponder for
which the line-of-sight changes significantly during the run. If one assumes the TDAS
measurement to be the “truth,” then the growth of the latitude and altitude differences
after passing the midpoint is the opposite of what is expected while the decrease in the
longitude difference is as expected. The north, west, and up velocity differences are all
essentially zero-mean. When the RSV is travelling at constant speed, the peak magnitudes
of the velocity differences are 0.6 fps for the north velocity, 0.3 fps for the west velocity,

and 1.7 fps for the up velocity.

The measurement residuals are shown in Figures 4.11 through 4.21. All residuals
are approximately zero-mean. The dashed lines on the residual plots are the expected
residual +10 bounds as computed by the filter. Only measurements within a 5¢ threshold
are accepted by the filter. For the barometric altitude and range-rate measurements, the
residuals have a generally “white” appearance and most of the residuals are within the
lo bounds, indicating slightly over—conservative filter tuning for these two measurement
types. For the range measurements, the residuals appear white for some transponders
and less so for others. The ratio of the actual residual variance to the expected residual

variance also appears to vary significantly among transponders.

The filter’s estimates of the transpénder position errors and the atmospheric propa-
gation delay, along with the filter estimated standard deviations, are shown in Figures 4.22
through 4.31. The poor geometry of the transponders relative to the track is apparent in
the 1o plots. There is essentially no observability of the transponder vertical position
errors. This is because the altitude of the RSV increases only 30 feet during the run,
thus keeping the line—of-sight elevation angles for all transponders under 5°. The effect
of passing by transponder 102 is apparent in most of the standard deviation plots; this is

where the 1o values decrease most rapidly.

The magnitudes of the estimated position errors remain resonable values throughout
the run, remaining under 7.5 feet. Some of the position error estimates appear to converge
on a relatively steady value in the second half of the run while others continue to vary.
Of particular interest is the spike in the estimated west position error for transponder

102. This spike seems to be correlated with spikes in the estimated position errors of the
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other transponders, particularly transponders 005 and 212. These rapid variations indicate
the filter’s redistribution of the measurement residual error during the period where it is

gaining the most information about the actual position errors for transponder 102.

The magnitudes of the estimated atmospheric propagation delays, after scaling for
range, correspond to linear range errors between 2.5 feet and -2.5 feet. Although the
true value of the propagation delay must always be positive, the negative estimates are
possibie for two reasons. The first is the inability of the filter to distinguish between the
atmospheric delay and the interrogator range calibration bias within the short duration of
the run. The second is the possibility of error in the open loop correction for propagation
delay made by the CIRIS interrogator. The 1o plots for the atmospheric delay error states

appear to be converging to steady values.
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Figure 4.5. Latitude Difference, Track Run E
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Figure 4.6. Longitude Difference, Track Run E
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